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Abstract

Zero-knowledge proofs are proofs that show a statement to be true
without revealing anything other than the veracity of the statement to
be proven. After a formal definition of zero-knowledge proof schemes
and a simple example, zero-knowledge proofs for Graph Isomorphism
and Graph 3-colorability are presented, the latter being the basis for
the proof that all languages in NP have zero-knowledge proofs. The
paper concludes with an application of zero-knowledge proofs in cryp-
tography, the Fiat-Shamir Indentification Protocol, which is the basis
for modern zero-knowledge entity authentication schemes.
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1 Introduction

A zero-knowledge proof (ZKP) is a proof of some statement which reveals
nothing other than the veracity of the statement. The word “proof” here
is not used in the traditional mathematical since (e.g. one may prove the
Pythagorean Theorem). Rather, a “proof”, or equivalently a “proof sys-
tem”, is a randomized protocol by which one party (called the prover) wishes
to convince another party (called the verifier) that a given statement is true.

Definition 1.1 (Interactive Proof systems and the class IP [2]). An interactive
proof system for a set S is a two-party game between a verifier executing a
probabilistic polynomial-time strategy and a prover which executes a com-
putationally unbounded strategy satisfying:

• Completeness: For every x ∈ S, the verifier always accepts after inter-
acting with the prover on common input x.

• Soundness: For some polynomial p, it holds that for every x /∈ S
and every potential strategy P ∗, the verifier rejects with probability
at least 1

p(|x|) after interacting with P ∗ on common input x.

The class of problems having interactive proof systems is denoted IP.

In other words, a proof is complete if an honest verifier will always be
convinced of a true statement by an honest prover. A proof is sound if a
cheating prover can convince an honest verifier that some false statement is
actually true with only a small probability. A proof is further considered to
be zero-knowledge if it satisfies the following definition.

Definition 1.2 (Zero-knowledge [2]). A strategy A is zero-knowledge on
(inputs from) the set S if, for every feasible strategy B∗ there exists a fea-
sible computation C∗ so that the following two probability ensembles are
computationally indistinguishable:

• the output of B∗ after interacting with A on common input x ∈ S

• the output of C∗ on input x ∈ S

In the previous definition, the first ensemble represents the output of an
actual execution of the proof system protocol, while the second ensemble
(called the “simulation”) is the output of a stand-alone procedure which
is not a part of any interactive system. A proof is called zero-knowledge
if the output of any strategy B∗ used by a cheating verifier could also be
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produced by the non-interactive computation C∗. In other words, whatever
information can be learned by interacting with A on some input x can also
be extracted from x without interacting with A.

Remark 1.3. ZKPs exist only if one-way functions exist, as a cheating ver-
ifier may be able to extract additional information after interacting with a
prover by essentially “hacking” the prover. The notion of “one-way func-
tions” is often generalized to represent any means of “commiting to a secret
bit” (i.e., information hiding).

2 A Very Simple ZKP

A magical cave [7]

(The following example was taken from [7], which was itself adapted from
[5].) Peggy has found a magical cave! The cave has a magic door deep inside
it that opens only upon uttering the secret word, a secret which Peggy has
uncovered. Victor hears about this and wishes to also know the secret.
Peggy agrees to sell Victor the secret word for $1,000,000, but Victor wants
to be certain that Peggy, indeed, knows the secret word before he pays.
How can Peggy (the prover) prove to Victor (the verifier) that she knows
the secret without actually conveying the secret to Victor?

Peggy and Victor devise the following scheme. Victor will wait outside
the cave while Peggy enters. She chooses either path A or path B at random.
Victor does not know which path she has chosen. Then, Victor will enter
the cave as far as the fork and announce the path along which he wants
Peggy to return.

Suppose Peggy knows the secret word. Then, she will be able to return
along either path A or path B regardless of the path she chose initially. If
Victor announces the same path through which Peggy chose to enter, she
simply exits the cave along that path. If Victor announces the path that
Peggy did not choose, she whispers the secret word (Victor is presumably
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too far away to hear it), thus opening the door and allowing her to return
along the desired path.

Suppose Peggy does not know the secret word. Then, she will only be
able to return along the appropriate path if Victor announces the same path
that she chose. This will occur with probability 1

2 . If Peggy is tested many
times, the probability that the path announced by Victor is the same chosen
by Peggy for every test becomes negligible. That is, Victor will eventually
discover that Peggy is a liar.

One might wonder why Victor simply does not tell Peggy to enter through
a known path (say, path A) and then require her to return along the other
path. Clearly, this would force Peggy to use her knowledge of the secret
word to return appropriately. However, such a scheme also allows Victor
to eavesdrop by following her down the prespecified path. By randomizing
the initial path, the probability that Victor can successfully eavesdrop is
reduced.

3 Zero-Knowledge Proof for Graph Isomorphism

Definition 3.1 (Graph Isomorphism and the language GI [1]). Two graphs
G(V,E) and H(V, F ) are isomorphic if and only if there exists a permutation
π ∈ S|V | (the symmetric group of |V | elements) such that (u, v) ∈ E iff
(π(u), π(v)) ∈ F . We then write H = πG. We say that the graph H(V, F )
is a random isomorphic copy of the graph G(V,E) if H is obtained from G
by picking π ∈R S|V | and letting H = πG.

The language GI (graph isomorphism) consists of all the pairs of iso-
morphic graphs (i.e. GI = {(G,H) : ∃π such that H = πG}).

A pair of isomorphic graphs with isomorphism f

Protocol 3.2. [A zero-knowledge proof system for GI [1]]
Common Input : Two graphs G0(V,E0) and G1(V,E1)

4



Let φ denote the isomorphism between G0 and G1 (i.e., G1 = φG0).
The following four steps are executed m times, each time using independent
random coin tosses.

(P1) The prover generates a graph H, which is a random isomorphic copy of
G1. This is done by selecting a permutation π ∈R S|V |, and computing
H = πG1. The prover sends the graph H to the verifier.

(V1) The verifier chooses at random α ∈R {0, 1}, and sends α to the prover.
(Intuitively, the verifier asks the prover to show him that H and Gα

are indeed isomorphic.)

(P2) If α = 1, then the prover sends π to the verifier, else (i.e., α 6= 1) the
prover sends π ·φ. (Note that the case α /∈ {0, 1} is handled as α = 0.)

(V2) If the permutation (ψ) received from the prover is not an isomorphism
between Gα and H (i.e., H 6= ψGα), then the verifier stops and rejects;
otherwise, he continues.

If the verifier has completed m iterations of the above steps, then he
accepts.

Protocol 3.2 works because, if the prover indeed possesses an isomor-
phism φ such that G1 = φG0, then any permutation π · φ has the property
that H = πG1 = π · φG0. Since π is chosen randomly, no knowledge of φ is
revealed to the verifier. The verifier asks for an isomorphism between H and
one of G0 and G1 randomly because only a prover with knowledge of φ can
prove upon request that either of (H,G0) and (H,G1) belong to GI. The
validity of Protocol 3.2 is made more precise in the following proposition.

Proposition 3.3. Protocol 3.2 constitutes a zero-knowledge proof for GI.

Proof. We show that Protocol 3.2 upholds the properties of completeness,
soundness, and zero-knowledge.

Completeness: Let (G0, G1) ∈ GI. Then the random isomorphic copy H
of G1 will always be isomorphic to both G0 and G1. Therefore, an honest
verifier will complete all m iterations and accept with probability 1.

Soundness: Let (G0, G1) /∈ GI. Then the random isomorphic copy H of
G1 will be isomorphic to only one of G0 or G1. (Note that in the protocol
as written, the prover always sets H = πG1. A cheating prover, however,
could possibly set H = πG0.) Therefore, an honest verifier will reject with
probability 1

2 in each round.
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Zero-knowledge: The only information revealed in each round is either
π or π · φ where π ∈R S|V |. Due to the random selection of π, a simulator
which simply computes a random isomorphic copy of G0, G1, or both is
computationally indistinguishable from interaction with the prover.

Remark 3.4. In the proof of zero-knowledge in [1], the author points out
that a cheating verifier may attempt to select a particular sequence of α in
order to extract some additional information about the graphs. The author
shows (in painful detail) that Protocol 3.2 is resistant to such a strategy.
This portion of the proof is exceptionally lengthy and will be omitted.

4 Zero-Knowledge Proofs for All Languages in NP

As shown in [1], there exists a ZKP for any language in NP. The proof of
this claim begins by first explicitly constructing a ZKP for the graph three-
colorability problem (G3C). Using this scheme and the fact that G3C is
NP-Complete [3], the proof that ZKPs exist for all problems in NP follows.

Definition 4.1 (Graph Three-Colorability and the language G3C [1]). A
graph G(V,E) is said to be 3-colorable if there exists a mapping φ : V →
{1, 2, 3} (called a proper coloring) such that every two adjacent vertices
are assigned different colors (i.e., each (u, v) ∈ E satisfies φ(u) 6= φ(v)).
Such 3-coloring induces a partition of the vertex set of the graph to three
independent sets. The language graph 3-colorability, denoted G3C, consists
of the set of undirected graphs that are 3-colorable.

A properly 3-colored graph [6]

The following “physical” zero-knowledge protocol for G3C uses as its bit-
commitment scheme a set of n lockable boxes whose keys are all distinct.

Protocol 4.2. [A zero-knowledge proof system for G3C [1]]
Common Input : A graph G(V,E), |V | = n, |E| = m

The following four steps are executed m2 times, each time using inde-
pendent coin tosses.
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(P1) The prover chooses at random an assignment of three colors to the
three independent sets induced by (the proper 3-coloring) φ, colors
the graph using this 3-coloring, and places these colors in n locked
boxes each bearing the number of the corresponding vertex. More
specifically, the prover chooses a permutation π ∈R S3 (the symmetric
group of 3 elements), places π(φ(i)) in a box marked i (∀i ∈ V ), locks
all boxes and sends them (wihtout the keys) to the verifier.

(V1) The verifier chooses at random an edge e ∈R E and sends it to the
prover. (Intuitively, the verifier asks to examine the colors of the
endpoints of e ∈ E.)

(P2) If e = (u, v) ∈ E, then the prover reveals the colors of u and v (to the
verifier) by sending the keys to boxes u and v. Otherwise, the prover
does nothing.

(V2) The verifier opens boxes u and v using the keys received and checks
whether they contain two different elements of {1, 2, 3}. If the keys do
not match the boxes, or the contents violates the condition, then the
verifier rejects and stops. Otherwise, the verifier continues to the next
iteration.

If the verifier has completed all m2 iterations, then it accepts.

Proposition 4.3. Protocol 4.2 constitutes a zero-knowledge proof for G3C.

Proof. We show that Protocol 4.2 upholds the properties of completeness,
soundness, and zero-knowledge.

Completeness: Let G ∈ G3C. Then any pair of boxes u and v corre-
sponding to some edge of G will certainly be colored differently. Therefore,
an honest verifier will complete all m2 iterations and accept with probability
1.

Soundness: Let G /∈ G3C. Then at least 1 of the m edges of G is not
properly colored. Therefore, an honest verifier will reject with probability
at least 1

m in each round.
Zero-knowledge: The only information revealed in each round is π(φ(u))

and π(φ(v)) where (u, v) = e ∈R E, π ∈R S3. Due to the random selection of
π, a simulator which simply outputs a pair of integers (i, j), i, j ∈R {1, 2, 3}
with i 6= j, is computationaly indistinguishable from interaction with the
prover.

Remark 4.4. If the permutation π is not applied independently and ran-
domly at each round, then the verifier may be able to learn the values of
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φ(u) and φ(v) for the selection of vertices u and v in each round. This not
only provides the verifier with additional information about φ (and thereby
violates the condition of zero-knowledge), but, on an edge-dense graph where
it may be the case that m � n, it is possible that m2 rounds is sufficient
for the verifier to have learned all of φ!

Theorem 4.5. [Zero-knowledge proof for all languages in NP [1]] If there
exists a nonuniformly secure encryption function, then every language in
NP has a zero-knowledge interactive proof system.

Proof. Let L ∈ NP, and t be the polynomial-time computable and invertible
reduction of L to 3-Colorability (G3C). Namely, t is the composition of the
standard reduction of L to 3SAT and the standard reduction of 3SAT to
G3C. Recall that x ∈ L iff t(x) is 3-colorable. A zero-knowledge interactive
proof system for L proceeds as follows:

On common input x, each party computes G ← t(x). The prover uses
an (arbitrary) zero-knowledge interactive proof system to prove that G is
3-colorable. The verifier acts according to the result of this subprotocol.

By Proposition 4.3, the above protocol constitutes an interactive proof
system for L. To see that the protocol is indeed zero-knowledge, one should
note that t is polynomial-time invertible (i.e., there exists a polynomial-time
algorithm t−1 such that t−1(t(x)) = x).

Remark 4.6. The proof found in [1] further explains why the invertibility
of t implies that the protocol Theorem 4.5 is zero-knowledge, but such a
proof is beyond the scope of this paper. As a sketch, the verifier V will
receive input t(x) and auxilliary input x. However, because of the auxilliary
input, V is not of a form to which the standard definition of zero-knowledge
can be applied. Instead, another verifier V ∗ is employed that first computes
x from t(x) (which can be done since t is polynomial-time invertible) and
then applies V with x as input. From here, the definition of zero-knowledge
can be proven first for V ∗ and then separately for V .

5 Fiat-Shamir Identification Protocol

In cryptogrpahy, ZKPs are primarily used as a means of entity authentica-
tion. That is, Peggy possesses some secret S that only she can know. She
proves to Victor that she is indeed Peggy (and not an impostor) by proving
that she possesses S. Of course, she wants to do so without revealing S to
Victor (or any potential eavesdroppers).
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The Fiat-Shamir identification protocol, while itself not usually imple-
mented in modern systems, is the basis of zero-knowledge identification pro-
tocols currently in use, such as Feige-Fiat-Shamir and Guillou-Quisquater.
As such, it serves to illustrate the properties which are important in more
sophisticated schemes.

Protocol 5.1 (Fiat-Shamir Identification Protocol [4]).
Initialization

1. A trusted center T selects and publishes an RSA-like modulus n = pq
but keeps the primes p and q secret.

2. The prover selects a secret s coprime to n, 1 ≤ s ≤ n − 1, computes
v = s2 mod n, and registers v with T as her public key.

Identification Protocol
The following steps are executed t times, each time using independent ran-
dom coin tosses.

(P1) The prover choses a random r, 1 ≤ r ≤ n − 1 and sends x = r2 mod
n to the verifier.

(V1) The verifier randomly selects a bit e ∈ {0, 1} and sends e to the prover.

(P2) The prover computes and sends to the verifier y, where y = r (if e = 0)
or y = rs mod n (if e = 1).

(V2) The verifier rejects if y = 0 or if y2 6∼= x · ve (mod n). (Depending on
e, y2 = x or y2 = xv mod n, since v = s2 mod n. Note that checking
for y = 0 precludes the case r = 0.)

If the verifier has completed all t iterations of the above steps, then he
accepts.

Proposition 5.2. The Fiat-Shamir Identification Protocol constitutes a
zero-knowledge entity authentication protocol.

Proof. We show that the Fiat-Shamir Identification Protocol upholds the
properties of completeness, soundness, and zero-knowledge.

Completeness: Suppose the prover possesses the secret s. Then she can
always correctly provide the verifier with y = r or y = rs upon request.
Therefore, an honest verifier will complete all t iterations and accept with
probability 1.
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Soundness: Suppose the prover does not possess the secret s. Then,
during any given round, she can provide only one of y = r or y = rs (see
remark). Therefore, an honest verifier will reject with probability 1

2 in each
round (which implies an overall probability of 2−t that a cheating prover
will not be caught).

Zero-knowledge: The only information revealed in each round is x = r2

mod n (in step P1) and either y = r or y = rs (in step P2). Such pairs
(x, y) could be simulated by choosing y randomly, then defining x = y2 or
x = y2

v . Such pairs, while not generated in the same way as in the protocol,
are computationally indistinguishable from them.

Remark 5.3. As in the cave story, one might wonder why Victor doesn’t
always request y = rs, thus forcing Peggy to make use of s. If this is done,
Peggy has a cheating strategy. She can select r randomly and then set
x = r2

v . When Victor requests y = rs, Peggy will send y = r. Now, when
Victor attempts to verify Peggys response, he will compute:

x · ve ≡ r2

v · v ≡ r
2 ≡ y2 (mod n)

thus fooling Victor into believing she has possession of s. This strategy
becomes ineffective if Victor asks either of the two questions at random.
Since Victor believes that x = r2 when he in fact has x = r2

v (due to Peggy’s

deception), he will expect Peggy to send y =
√

r2

v , which she will be unable
to compute since this requires her to solve a square root (mod n).

Example 5.4 (An example run of the Fiat-Shamir Identification Protocol).

Initialization

1. Let p = 5 and q = 7. Then, n = pq = 35. n is published to a trusted
center.

2. Peggy secretly chooses s = 16, which is coprime to n. She publishes
v = s2 mod n = 11 to the trusted center.

Protocol
Suppose Victor is very easy to convince, and hence requires only 2 successful
iterations of the protocol in order to accept.

(P11) Peggy randomly selects r = 10. She sends x = r2 mod n = 102 mod
35 = 30 to Victor.

(V11) Victor randomly selects e = 0 and sends it to Peggy.
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(P21) Since e = 0, Peggy computes y = r = 10 and sends it to Victor.

(V21) Victor verifies that y2 = 102 ≡ 30 (mod 35).

(P12) Peggy randomly selects r = 20. She sends x = r2 mod n = 202 mod
35 = 15 to Victor.

(V12) Victor randomly selects e = 1 and sends it to Peggy.

(P22) Since e = 1, Peggy computes y = sr mod n = 16 · 20 mod 35 = 5 and
sends it to Victor.

(V22) Victor verifies that y2 = 25 ≡ 15 · 11 (mod 35).

Peggy has successfully completed t = 2 rounds, so Victor accepts

6 Conclusion

Zero-knowledge proofs are of considerable theoretical and practical inter-
est to mathematicians and cryptographers alike. ZKPs acheive the seem-
ingly contradictory goals of proving a statement without revealing anything
other than the fact that the statement is indeed true. The zero-knowledge
proofs presented for Graph Isomorphism and 3-colorability have further im-
plications on complexity theory which are not fully discussed in this paper.
The Fiat-Shamir Identification Protocol, while not normally implemented
in modern cryptosystems, is the basis of existing zero-knowledge entity au-
thentication schemes and shows that such schemes can actually be used in
practice.
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