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Abstract The Lovász local lemma is a well-known probabilistic technique
commonly used to prove the existence of rare combinatorial objects. We explore
the lopsided (or negative dependency graph) version of the lemma, which, while
more general, appears infrequently in literature due to the lack of settings in which
the additional generality has thus far been needed. We present a general framework
(matchings in hypergraphs) from which many such settings arise naturally. We also
prove a seemingly new generalization of Cayley’s formula, which helps defining
negative dependency graphs for extensions of forests into spanning trees. We
formulate open problems regarding partitions and doubly stochastic matrices that
are likely amenable to the use of the lopsided local lemma.

1 Introduction

The Lovász Local Lemma (hereinafter, “L3”) says there is a positive probability
that none of the events in some collection occurs, provided the dependencies among
them are not too strong. First we state L3 [3, 7, 22, 23]. Given events A1, . . . ,An in a
probability space, define a dependency graph to be a simple graph G on V (G) = [n]
(i.e., the set of the names of the events, {1,2, . . . ,n}) satisfying that every event Ai

is independent of the elements of the event algebra generated by {A j : i j /∈ E(G)}.
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Lemma 1 (Lovász Local Lemma). [3] Let A1, . . . ,An be events with dependency
graph G. If there are numbers x1, . . . ,xn ∈ [0,1) such that for all i

Pr(Ai)≤ xi ∏
i j∈E(G)

(1− x j).

Then

Pr

(
n∧

i=1

Ai

)
≥

n

∏
i=1

(1− xi)> 0.

The original lemma of Lovász in [7], which is a special case of Lemma 1, was used
to prove the 2-colorability of a certain hypergraph, and in general, together with
the extension L3 [22], to prove the existence of combinatorial objects, for which
construction seemed hopeless. Surprisingly, there are recent constructive versions
of the lemma (e.g., in [19]) that will produce the desired object explicitly for many
coloration problems. Define CG(i) = { j ∈ [n] | i j /∈ E(G)}. Inspection of the—not
too difficult—proof of L3 concludes that we use independence in the form of

∀i ∈ [n] ∀S ⊆CG(i) Pr

(∧
j∈S

A j

)
�= 0 → Pr

(
Ai

∣∣∣∣∣
∧
j∈S

A j

)
= Pr(Ai). (1)

Further analyzing the proof, it turns out that the inequality below is sufficient,
instead of equality in (1):

∀i ∈ [n] ∀S ⊆CG(i) Pr

(∧
j∈S

A j

)
�= 0 → Pr

(
Ai

∣∣∣∣∣
∧
j∈S

A j

)
≤ Pr(Ai). (2)

Formally, a negative dependency graph for given events A1, . . . ,An in a probability
space is a simple graph G on V (G) = [n] (i.e., the set of the names of the events,
{1,2, . . . ,n}) satisfying (2). Observe that every negative dependency graph is a
dependency graph, but not vice versa.

Lemma 2 (Lopsided Lovász Local Lemma, L4). Lemma 1 holds with “depen-
dency graph” relaxed to “negative dependency graph.”

The inequality in (2) explains the term “lopsided” in the literature for L4. Negative
dependency graphs and the lopsided version of the lemma were first introduced in
[8] by Erdős and Spencer to prove the existence of a certain latin transversal, and
independently by Albert, Frieze, and Reed [2], following the original Lovász version
[7]. L4 as stated above is due to Ku [14]. These papers did not investigate classes of
problems where L4 could be applied. Few results are present in the literature making
use of a negative dependency graph that is not also a dependency graph.

It is worth mentioning here the following useful equivalents of (2):

∀i ∈ [n] ∀S ⊆CG(i) Pr(Ai) �= 0 → Pr

(∧
j∈S

A j

∣∣∣∣∣ Ai

)
≤ Pr

(∧
j∈S

A j

)
, (3)
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or

∀i ∈ [n] ∀S ⊆CG(i) Pr

(∧
j∈S

A j

)
�= 0 → Pr

(
Ai
)≤ Pr

⎛
⎝ ∧

j∈S∪{i}
A j

∣∣∣∣∣∣
∧
j∈S

A j

⎞
⎠, (4)

and also the following, which takes the form of a correlation inequality:

∀i ∈ [n] ∀S ⊆CG(i) Pr(Ai)Pr

(∨
j∈S

A j

)
≤ Pr

(
Ai ∧

(∨
j∈S

A j
))

. (5)

We note that even more general versions of the lemma hold practically with the same
proof. Given events A1, . . . ,An in a probability space, define a dependency digraph−→
G on V (G) = [n] by requiring that every event Ai is independent of the elements

of the event algebra generated by {A j : j ∈C−→
G
(i)}, with C−→

G
(i) = { j : i j /∈ E(

−→
G )},

and a negative dependency digraph graph
−→
G by (2), using

−→
G and C−→

G
(i) instead of

G and CG(i) in (2).

Lemma 3 (Lopsided Lovász Local Lemma, digraph version
−→
L4 [3]). Lemma 1

holds with “dependency graph” relaxed to “negative dependency digraph.”

2 Examples of Negative Dependency Graphs

2.1 Random Matchings in Complete Uniform Hypergraphs

A matching M in a hypergraph is a collection of pairwise vertex-disjoint hyperedges.
The set of vertices covered by hyperedges of the matching M is denoted by V (M).
A matching is perfect if every vertex of the underlying hypergraph appears in
some hyperedge of the matching. In what follows, we will restrict our attention
to matchings of the complete k-uniform hypergraph on N vertices, commonly
denoted Kk

N .
A matching of Kk

N is an r-matching if it consists of r vertex-disjoint hyperedges.

For some fixed integer k, r, N satisfying k ≥ 2, r ≥ 1, and N ≥ rk, let Ω k,r
N be

the uniform probability space over all r-matchings of Kk
N . An r-matching of Kk

N is
maximal if r = �N

k �; it is perfect if N = kr. The space of maximal matchings of Kk
N

is simply denoted by Ω k
N .

Given a matching M in Kk
N , we will be interested in the canonical event AM

containing all r-matchings that extend M. More precisely,

AM = AM
N,k,r =

{
M′ ∈ Ω k,r

N | M ⊆ M′
}
.
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We will say that two matchings conflict, if they have edges that are neither identical
nor disjoint, two canonical events conflict, whenever the matchings used to define
them conflict.

Given a collection M of matchings (or other combinatorial objects, as we will
see later), the conflict graph for the collection {AM | M ∈ M } is the simple graph
with vertex set M and edge set {M1M2 |M1 ∈M and M2 ∈M are in conflict}. The
following theorem was proved in [17] in the special case k = 2 and N is even:

Theorem 1. Let M be a collection of matchings in Kk
N. The conflict graph for the

collection of canonical events {AM | M ∈ M } is a negative dependency graph for
the probability space Ω k

N.

Theorem 1 can be deduced from the following lemma, which deals with a more
general probability space Ω k,r

N . The proof of the lemma is postponed.

Lemma 4. In Ω k,r
N , fix a matching M ∈M with |M|< r. Let J be any collection of

matchings from M whose members do not conflict with M. If |∪M′∈J V (M′ \M)| ≤
rk−|V(M)|+ k− 1 and Pr(

∧
M′∈J AM′

)> 0, then

Pr

⎛
⎝AM

∣∣∣∣∣∣
∧

M′∈J

AM′

⎞
⎠≤ Pr(AM) . (6)

Proof of Theorem 1: Write N = rk+ t. For the space Ω k
N of maximum matchings,

we have 0 ≤ t ≤ k− 1. In this case, we have

| ∪M′∈J V (M′ −M)| ≤ N −|V(M)|= rk+ t −|V (M)| ≤ rk−|V(M)|+ k− 1.

By Lemma 4, the conflict graph for the collection of canonical events {AM |M∈M }
is a negative dependency graph for Ω k

N . �
The following example shows the conflict graph may not be a negative depen-

dency graph of Ω k,r
N for r < �N

k �. Take M1,M2 ∈ Ω k,r
N so that M1 ∪M2 is a matching

of size r+ 1. This is possible since r+ 1 ≤ �N
k �. By our choice, M1 and M2 are not

adjacent in the conflict graph. However, we have

Pr(AM1 |AM2) = 1 > Pr(AM1),

contradicting (3). Nevertheless, we can add orientation and some edges to the
conflict graph to turn it into a negative dependency digraph.

Theorem 2. For integers r ≥ 1, k ≥ 2, and N ≥ (r+ 1)k, let M be a collection of
r-matchings in Kk

N. For any M ∈ M , let SM be an arbitrary set of N − (r+ 1)k+ 1
vertices not in V (M). Let G be a graph on the vertex set M where MM′ is a directed
edge of G if M′ conflicts with M or M′ contains some vertex in SM. Then G is a
negative dependency digraph for the collection of canonical events {AM | M ∈ M }
in the probability space Ω k,r

N .
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Throughout, we assume that the vertex set of Kk
N is [N]. We will view the identity

map as an injection from [N] into [N + s] for s ≥ 0 and also from V (Kk
N) to V (Kk

N+s)

and from E(Kk
N) to E(Kk

N+s). To emphasize the difference in the probability space,

we use AM
N,k,r to denote the canonical event induced by the matching M in Ω k,r

N and

use Prk,r
N (•) to denote the probability in Ω k,r

N . To simplify our notation, we will write

Pr(•) for Prk,r
N (•), if the probability space is Ω k,r

N , and spell out the full notation
otherwise.

Lemma 5. For any integers r ≥ 1, k ≥ 2, N ≥ rk, N0 = min{N−k,rk−1} and any
collection M of matchings in Kk

N0
, we have

Prk,r−1
N−k

( ∧
M∈M

AM
N−k,k,r−1

)
≤ Prk,r

N

( ∧
M∈M

AM
N,k,r

)
. (7)

Proof. Let t = N − rk. We have 0 ≤ t ≤ N − k. Given an r-matching M′′ ∈ Ω k,r
N , M′′

can be viewed as a hypergraph with r pairwise disjoint hyperedges and t isolated
vertices. The right end of a hyperedge H is maxi∈H i. A hyperedge of M′′ is called
rightmost if it has the largest right end among all hyperedges in M′′. A k-edge R
can be the rightmost hyperedge of some matching M′′ ∈ Ω k,r

N if and only if the right
end vertex of R is at least rk. For i = 0,1,2, . . . , t, let Ri be the family of k-edges
whose right end is N − i. Let R = ∪t

i=0Ri. Consider the mapping ψ : Ω k,r
N → R,

which maps M′′ to its rightmost hyperedge. Clearly, ∪R∈Rψ−1(R) forms a partition
of Ω k,r

N .
Fix an i (0 ≤ i ≤ t) and a k-edge R ∈ Ri. Easy calculation shows that

ai := Pr
(
ψ−1(R)

)
=

k!r(t)i

(N)i(N − i)k
.

Direct comparison of terms gives

a0 ≥ a1 ≥ ·· · ≥ at . (8)

Since N0 ≤ kr− 1, the hyperedge R above is not in any matching M′ ∈ M . Define
M ′(R) = {M′ ∈ M : V (M′)∩R = /0} and observe that

∧
M′∈M

AM′
N,k,r ∧ψ−1(R) =

∧
M′∈M ′(R)

AM′
N,k,r ∧ψ−1(R).

Let F = {N − k+ 1,N − k+ 2, . . . ,N} and σ be any permutation of [N] that maps
R \ F to F \ R, maps F \ R to R \ F , and leaves other vertices as fixed points.
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The permutation σ maps
∧

M′∈M ′(R) AM′
N,k,r ∧ψ−1(R) to

∧
M′∈M ′(R)AM′

N,k,r ∧ AF
N,k,r.

We have

Pr

( ∧
M′∈M

AM′
N,k,r

)
=

t

∑
i=0

∑
R∈Ri

Pr

( ∧
M′∈M

AM′
N,k,r ∧ψ−1(R)

)

=
t

∑
i=0

∑
R∈Ri

Pr

⎛
⎝ ∧

M′∈M ′(R)
AM′

N,k,r ∧ψ−1(R)

⎞
⎠

=
t

∑
i=0

∑
R∈Ri

Pr

⎛
⎝ ∧

M′∈M ′(R)
AM′

N,k,r ∧AF
N,k,r

⎞
⎠

≥
t

∑
i=0

∑
R∈Ri

Pr

( ∧
M′∈M

AM′
N,k,r ∧AF

N,k,r

)

=
t

∑
i=0

∑
R∈Ri

Pr

( ∧
M′∈M

AM′
N,k,r

∣∣∣∣∣ AF
N,k,r

)
Pr
(
AF

N,k,r

)

= Prk,r−1
N−k

( ∧
M′∈M

AM′
N−k,k,r−1

)
t

∑
i=0

∑
R∈Ri

Pr
(
AF

N,k,r

)
.

In the last step, we use the fact that

Prk,r
N

( ∧
M′∈M

AM′
N,k,r

∣∣∣∣∣AF
N,k,r

)
= Prk,r−1

N−k

( ∧
M′∈M

AM′
N−k,k,r−1

)
.

Note that Pr(AF
N,k,r) = a0 ≥ ai = Pr

(
ψ−1(R)

)
. We have

t

∑
i=0

∑
R∈Ri

Pr
(
AF

N,k,r

)≥ t

∑
i=0

∑
R∈Ri

Pr
(
ψ−1(R)

)
= Pr

(
Ω k,r

N

)
= 1.

Thus,

Pr

( ∧
M′∈M

AM′
N,k,r

)
≥ Prk,r−1

N−k

( ∧
M′∈M

AM′
N−k,k,r−1

)
.

�
Proof of Lemma 4: Returning to the proof of Lemma 4, Fix a matching M ∈ M
and let J be any collection of matchings from M that do not conflict with M. Our
aim is to show

Pr

⎛
⎝AM

∣∣∣∣∣∣
∧

M′∈J

AM′

⎞
⎠≤ Pr

(
AM).
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Observe that the inequality holds trivially when Pr
(
AM
)
= 0. Otherwise, the above

formula is equivalent with the following (that is essentially (3)):

Pr

⎛
⎝ ∧

M′∈J

AM′

∣∣∣∣∣∣ AM

⎞
⎠≤ Pr

⎛
⎝ ∧

M′∈J

AM′

⎞
⎠.

Let J M = {M′ \M |M′ ∈J }. If M ∈J , then the left-hand side of the estimate
above is zero, and so we have nothing to do. Assume instead that M /∈ J . Since
every matching M′ in J is not in conflict with M, the vertex set of M′ \M is
nonempty and is disjoint from the vertex set of M. Let T be the set of vertices
covered by the matching M and U be the set of vertices covered by at least one
matching F ∈ J M . We have T ∩U = /0. Let π be a permutation of [N] mapping
T to {N − |T |+ 1,N − |T |+ 2, . . . ,N}. We have π(T )∩ π(U) = /0. Thus, π(U) ⊆
[N −|T |]. Define π(J M) to be the collection {π(F) | F ∈ J M}. We obtain

Pr

⎛
⎝ ∧

M′∈J

AM′

∣∣∣∣∣∣ AM

⎞
⎠=

Pr
(∧

M′∈J AM′ ∧AM
)

Pr(AM)

=
Pr
(∧

M′∈J AM′\M ∧AM
)

Pr(AM)

=
Pr
(∧

F∈J M AF ∧AM
)

Pr(AM)

= Pr

⎛
⎝ ∧

F∈J M

AF

∣∣∣∣∣∣ AM

⎞
⎠

= Pr

⎛
⎝ ∧

π(F)∈π(J M)

Aπ(F)
N,k,r

∣∣∣∣∣∣ Aπ(M)

⎞
⎠

= Prk,r− j
N− jk

⎛
⎝ ∧

π(F)∈π(J M)

Aπ(F)
N− jk,k,r− j

⎞
⎠ (with j = |M|< r)

≤ Pr

⎛
⎝ ∧

π(F)∈π(J M)

Aπ(F)
N,k,r

⎞
⎠ (by Lemma 5)

= Pr

⎛
⎝ ∧

F∈J M

AF
N,k,r

⎞
⎠
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= Pr

⎛
⎝ ∧

M′∈J

AM′\M
N,k,r

⎞
⎠

≤ Pr

⎛
⎝ ∧

M′∈J

AM′
N,k,r

⎞
⎠.

�

2.2 Random Matchings in Complete Multipartite Graphs

Theorem 1 shows how a general class of negative dependency graphs can arise from
the space of random perfect matchings of Kk

N . A similar result was shown in [16] for
the uniform probability space of maximum matchings of a complete bipartite graph
Ks,t , with the same definition of “conflict” and “canonical event” as above. This can
be viewed as the uniform probability space of random injections from an s-element
set into a t-element set (for s ≤ t), providing a plethora of applications.

This generalizes to multipartite matchings as follows. For details see [18]. Let us
be given disjoint sets U1, . . . ,Um with |U1| ≤ |Ui| for 1 < i. Call edges the sets H,
if H ⊆ ∪m

i=1Ui and for all i, |H ∩Ui| = 1. A matching is a set of disjoint edges. A
matching is of maximum size if it covers all elements of U1. Consider the uniform
probability measure on set of all maximum size matchings. Given a matching M,
let AM denote the event of all maximum size matchings that contain all edges of M.
We say that two matchings, M1 and M2, are in conflict if they contain edges that are
neither identical nor disjoint.

Theorem 3. [18] Let M be a collection of multipartite matchings on U1, . . . ,Um.
The conflict graph for the collection of canonical events {AM |M ∈M } is a negative
dependency graph.

2.3 Spanning Trees in Complete Graphs

The various matching spaces we have mentioned have in common that a partial
matching does not conflict with any element of its corresponding canonical event.
Indeed, the proof of Theorem 1 relies heavily on this fact by reducing the problem
of extending a given partial matching to the problem of finding matchings on the
unmatched vertices only.

Consider now the uniform probability space of all spanning trees of KN . Given a
forest F (i.e., a cycle-free subset of the edges of KN), the canonical event AF is the
collection of all spanning trees of KN containing F . We say that two forests conflict
whenever there are a pair of edges, one in the first forest and one in the second, that
intersect in exactly one vertex. In other words, two forests F and F ′ do not conflict
if for every connected component C ⊆ F and C′ ⊆ F ′, C and C′ are either identical
or disjoint.
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Theorem 4. Let F be a collection of forests in KN. The conflict graph for the
collection of canonical events {AF | F ∈ F} is a negative dependency graph.

Notice that the spanning tree setting stands in stark contrast to the matching and
partition settings; a forest conflicts with every spanning tree in its corresponding
canonical event! The proof of Theorem 4 hinges on two lemmata. The first is a direct
generalization of Cayley’s theorem, while the second is a special case of Theorem 4.

Lemma 6. Let us be given a forest F in KN, which has its components C1,C2,
. . . ,Cm on f1, f2, . . . , fm vertices. Then, the number of spanning trees T in KN, such
that F is contained by T , is

f1 f2 · · · fmNN−2−∑i( fi−1). (9)

Proof. Recall Menon’s Theorem (Problem 4.1 in [15]): the number of spanning
trees in KN with prescribed degrees d1,d2, . . . ,dN in vertices 1,2, . . . ,N is the
multinomial coefficient

( N−2
(d1−1),...,(dN−1)

)
. Contracting the components of F to single

vertices, T contracts to a spanning tree T ∗ of KN−∑i( fi−1). Let v1, . . . ,vm denote
the result of contraction of C1,C2, . . . ,Cm, and u1,u2, . . . ,uN−∑i fi the vertices from
1,2, . . . ,N, not covered by F . By Menon’s theorem, the number of H spanning trees
of KN−∑i( fi−1), with degree di in vi and D j in u j, is(

N − 2−∑i( fi − 1)
(d1 − 1), . . . ,(dm − 1),(D1 − 1), . . . ,(DN−∑i fi − 1)

)
.

Note that every H spanning tree of KN−∑i( fi−1) with degree di in vi and D j in u j

arises precisely ∏i f di
i ways as a contraction T ∗ from some T spanning tree of KN .

Hence the number of spanning trees T containing F is

∑
(

N − 2−∑i( fi − 1)
(d1 − 1), . . . ,(dm − 1),(D1 − 1), . . . ,(DN−∑i fi − 1)

)
∏

i
f di
i ,

where the summation goes for all d1, . . . ,dm and D1, . . . ,DN−∑i fi sequences. The
multinomial theorem easily evaluates this summation to the required quantity. �
For the next lemma, we say two forests are in strong conflict, if they are not vertex
disjoint.

Lemma 7. Let F be a collection of forests in KN. The strong conflict graph for the
collection of canonical events {AF | F ∈ F} is a negative dependency graph.

Proof. To prove Lemma 7, we prove (5), where Ai is the set of spanning trees
containing the forest Fi, and Fi is not in strong conflict with Fj for any j ∈ S.
By inclusion–exclusion,

Pr

(∨
j∈S

A j

)
= ∑

R⊆S,|R|≥1

Pr

(∧
j∈R

A j

)
(−1)|R|−1
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and

Pr

(
Ai ∧

(∨
j∈S

A j

))
= ∑

R⊆S,|R|≥1

Pr

(
Ai ∧

(∧
j∈R

A j

))
(−1)|R|−1.

Observe that the event Ai ∧ (∧ j∈RA j) consists of spanning trees that contain the
forest Fi and GR = ∪ j∈RFj. The latter graph is either a forest or contains cycle. In
the latter case, the corresponding event is impossible. Finally, we claim

Pr(Ai)Pr

(∧
j∈R

A j

)
= Pr

(
Ai ∧

(∧
j∈R

A j

))

either by GR being impossible (and both sides are zero) or by Fi and GR being
vertex-disjoint forests, whose union is a forest again, having as components each
and every component of Fi and GR. Lemma 6 finishes the proof. �
Finally, to prove Theorem 4, let Ai denote again the set of spanning trees containing
the forest Fi. We are going to prove (5). If Fi has no strong conflict with any Fj

( j ∈ S), then Lemma 7 already gives us the wanted result. Now suppose Fi does have
strong conflict with some Fj ( j ∈ S). Define F ′

j = Fj \Fi (we mean the difference of
the edge sets). Let A′

j be the event corresponding to F ′
j . We have

Pr

(
Ai ∧

(∧
j∈S

A j

))
= Pr

(
Ai ∧

(∧
j∈S

A′
j

))

= Pr(Ai)Pr

(∧
j∈S

A′
j

)
(by Lemma 7)

≤ Pr(Ai)Pr

(∧
j∈S

A j

)
.

�

Note that in Lemma 7 we proved a negative dependency graph with equalities
everywhere. This is in fact a negative dependency graph. It is likely that indepen-
dence is lurking in the form of independent choice of entries in the Prüfer code or
some other sequence encoding of trees.

There is one more interesting comment to make here. Fix any connected graph G
and two of its edges e and f . In the uniform probability space of the spanning trees
of G, the correlation inequality

Pr(Ae)Pr
(
A f )≥ Pr

(
Ae ∧A f ) (10)

holds [25]. This is the opposite of the inequality that we expect for (5)! There is no
contradiction, however, as for G = KN and disjoint edges, (10) holds with identity,
and for two edges sharing a single vertex, we have a conflict and we made no claim.



Quest for Negative Dependency Graphs 253

Change the underlying probability space of spanning trees to the uniform
probability space of spanning forests of KN , and let the canonical event associated
with a forest be the set of all spanning forests containing it. Then neither conflict
nor strong conflict of forests defines a negative dependency graph for their canonical
events—this is in line of the conjecture of Kahn [13] that in every connected graph,
(10) holds, where Ae is the set of spanning spanning forests containing edge e.

2.4 Upper Ideals in Distributive Lattices

Let X be an N-element set, and let ΩN be the probability space consisting of all
subsets of X and equipped with the uniform probability measure. For a fixed subset
Y of X , define the canonical event AY to be the collection of all subsets of X that
contain Y . In other words,

AY = {Z ∈ ΩN | Y ⊆ Z}.

Theorem 5. Let Y be a collection of nonempty subsets of an N-element set. The
graph with vertex set {AY | Y ∈ Y } is an edgeless negative dependency graph for
the events AY .

More generally, let Γ be a distributive lattice equipped with the uniform probability
measure. For Y ∈ Γ , let

AY = {Z ∈ Γ | Y ≤ Z}.
Theorem 6. Let Y be a collection of elements of a distributive lattice Γ . The graph
with vertex set {AY | Y ∈ Y } is an edgeless negative dependency graph for the
events AY .

Proof. Clearly Theorem 6 implies Theorem 5, if applied to the subset lattice. We
have to show (5) for every Ai = AY (Y ∈ Y ) and every S ⊆ Γ \ {Y}. Consider
the indicator functions of the sets AY and ∨U∈SAU . These are increasing Γ → R

functions, to which the FKG inequality [10] applies, providing (5). Note that the
FKG inequality follows from the even more general four functions theorem [1, 3].
The special case of (5) for the subset lattice already follows from [21].

2.5 Symmetric Events

We say that the events A1,A2, . . . ,An are symmetric if the probability of any boolean
expression of these events does not change if we substitute Aπ(i) to the place of Ai

simultaneously for any permutation π of [n]. The following theorem was proved
in [16]:
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Theorem 7. Assume that the events A1,A2, . . . ,An are symmetric, and let pi denote
Pr(A1 ∧A2 ∧ . . .∧Ai) for i = 1,2, . . . ,n, and let p0 = 1. If the sequence pi is
logconvex, i.e., p2

k ≤ pk−1 pk+1 for k = 1,2, . . . ,n− 1, then these events have an
empty negative dependency graph.

3 Open Problems

3.1 Maximum Size Matchings in Graphs

The concept of canonical event and conflict, as defined in Sect. 2.1, can be extended
in the case k = 2 for maximum size matchings in any graph G. Theorems 1 (for k =
2) and 3 can be interpreted that for the graphs G = Kn and Ks,t , conflict of canonical
events defines a negative dependency graph. Not every ambient graph will allow
this result [17]. For example, for G = C6, let e and f be any two opposite edges.
Notice there are only two perfect matchings in C6. We have that Pr

(
A{e}) = 1

2 ,

while 1 = Pr
(

A{e}
∣∣∣ A{ f}

)
�≤ Pr

(
A{e}). The 3-dimensional hypercube also fails this

property. However, paths with even number of vertices have this property. Can we
possibly classify the graphs that have this property?

3.2 Partition Lattice

The space of perfect matchings of Kk
N can be viewed as the space of partitions of

an N-element set in which every block is of size k. Can we still find a negative
dependency graph without this restriction on block sizes? To state this question
more precisely, we will call a collection of disjoint subsets of an N-element set a
partial partition and say that two partial partitions conflict whenever they have two
classes neither disjoint nor identical, i.e., their union is not again a partial partition.
(A partial partition may in fact fully partition the underlying set.) The ambient
probability space is the space of all partitions of an N-element set (equipped with
the uniform distribution) so that the canonical event AM for a given partial partition
M is the collection of all partitions extending M.

Conjecture 1. Let M be a collection of partial partitions of an N-element. The
conflict graph for the collection of canonical events {AM | M ∈ M } is a negative
dependency graph.

Despite its apparent similarity to Theorem 1, the proof we gave cannot be
applied when there are no restrictions on the block sizes. In particular, the necessary
adaptation of Lemma 5, namely

PrN

( ∧
M∈M

AM
N

)
≤ PrN+1

( ∧
M∈M

AM
N+1

)
,



Quest for Negative Dependency Graphs 255

may fail in some instances. For example, let M1 = {{1},{2}}, M2 = {{1,},{3}},

and M3 = {{2},{3}}. One can compute by hand that Pr3
(
AM1

3 ∧AM2
3 ∧AM3

3

)
= 4

5 ,

while Pr4
(
AM1

4 ∧AM2
4 ∧AM3

4

)
= 11

15 . Theorem 6 is not going to help as the partition
lattice is not distributive.

Let M,M1, . . . ,Mk be partial partitions of an N-element set such that M conflicts
with none of the Mi (but Mi may conflict with Mj for i �= j). The required
Pr(AM |∧k

i=1 AMi) ≤ Pr(AM) is equivalent to the inequality Pr(AM)Pr(
∨k

i=1 AMi)
≤ Pr(AM ∧ (

∨k
i=1 AMi)) (see (5)).

Let B j denote the jth Bell number, which counts the number of partitions of a
j-element set. The last inequality can be rewritten as

∣∣AM
∣∣ ∣∣∣∣∣

k⋃
i=1

AMi

∣∣∣∣∣≤ BN

∣∣∣∣∣AM ∩
(

k⋃
i=1

AMi

)∣∣∣∣∣ . (11)

|AM|= BN−|∪M|, and the other two terms in (11) can be expressed by Bell numbers
using inclusion–exclusion; however, the expression will depend heavily on which
blocks the partial partitions have in common and whether they conflict. If we assume
that all the partial partitions Mi have disjoint underlying sets and each cover exactly
m elements, (11) turns into

BN−m

k

∑
i=1

(−1)i+1
(

k
i

)
BN−i·m ≤ BN

k

∑
i=1

(−1)i+1
(

k
i

)
BN−(i+1)·m. (12)

The inequality above has been verified asymptotically in N for small fixed values
of m and k with Maple, using the modification of the Moser–Wyman formula for
the Bell numbers found in [5]. [5] says that uniformly for h = O(lnn), as n → ∞,

Bn+h =
(n+h)!
rn+h

eer−1

(2πB)1/2 (1+
P0+hP1+h2P2

er + Q0+hQ1+h2Q2+h3Q3+h4Q4
e2r +O(e−3r)), where

rer = n, B = (r2 + r)er, Pi and Qi are known rational functions of r. Pi and Qi can
be found explicitly in [4].

3.3 Permanent of Doubly Stochastic Matrices

Let A = (ai, j) be an n× n doubly stochastic matrix with non-negative entries. For
each 1 ≤ i≤ n, let Xi be independent random variables that select the element j from
{1, . . . ,n} with probability ai, j. Define also Bi to be the event that Xi = Xj for some
j �= i.

Conjecture 2. The collection of events {Bi | 1 ≤ i ≤ n} are the vertices of an
edgeless negative dependency graph.

This conjecture is relevant because of the continuing interest in lower bounds for
the permanent. Computing the permanent is #P-hard [26] and is hard for the entire



256 L. Lu et al.

polynomial-time hierarchy [24]. Schrijver [20] was the first to give an interesting
lower bound for the permanent in the form per(Ã) ≥ ∏1≤i≤n

1≤ j≤n
(1− ai, j), where Ã

is the matrix whose (i, j)th entry is ai, j(1− ai, j). Gurvits [12] has the current best
lower bound, extending the ideas of [20]:

per(A)≥ ∏
1≤i≤n
1≤ j≤n

(1− ai, j)
1−ai, j . (13)

Let us see what L4 gives, provided Conjecture 2 holds. Interpret Xi as selecting
an entry j from row i of the doubly stochastic matrix. From this perspective,
Bi is the event that, for some row j �= i, the random variables Xi and Xj se-
lected entries belonging to the same column for rows i and j. The product of
n entries (one selected from each row) contributes to the permanent precisely
when the chosen columns satisfy the event

∧n
i=1 Bi. Thus, per(A) = Pr

(∧n
i=1 Bi

) ≥
∏n

i=1 (1−Pr(Bi)) =∏n
i=1 Pr

(
Bi
)
. Now, Bi is the event that, for all k �= i, the value of

Xi differs from the value of Xk. Letting Xi = j, the probability that Xk �= j is 1−ak, j

since the row sum is 1. Summing over j, we have

Pr
(
Bi
)
=

n

∑
j=1

ai, j

n

∏
k=1
k �=i

(
1− ak, j

)
. (14)

Finally, L4 would give the lower bound

per(A)≥
n

∏
i=1

n

∑
j=1

ai, j

n

∏
k=1
k �=i

(
1− ak, j

)
. (15)

It is interesting to compare our conjectured bound with the bound in [12]. [12]
conjectures (13) makes the least fraction of the permanent of a doubly stochastic
matrix on the matrix C, in which cii = 1/2 and for i �= j ci j = 1/(2n−2), with value
(
√

2+ o(1))−n. Note that (13) evaluates to (
√

2e+ o(1))−n, while (15) evaluates
to (2

√
e+ o(1))−n on C, so our lower bound performs worse. However, (15) has

terms more similar to the permanent than the terms in (13), possibly making easier
to estimate the performance of the approximation.

Another interesting matrix to compare the bounds is 1
n J, in which every entry

is 1/n. The famous van der Waerden conjecture stated that the permanent of non-
negative doubly stochastic matrices is minimized on J, with per( 1

n J) = n!/nn =
(1+o(1))e−n. This conjecture was proved by Friedland [11] with o(e−n) error term
and exactly by Falikman [9] and Egorychev [6]. It is easy to see that both (13) and
(15) evaluate (1+ o(1))e−n on 1

n J.
Evidence for the validity of Conjecture 2 is that it holds for A = 1

n J or A is a
permutation matrix. For any fixed event Bi and any subset S = {k1,k2, . . . ,ks} of the
vertices (with i /∈ S), we have this generalization of (14):

Pr

(∧
j∈S

B j

)
= ∑

T⊆[n]
|T |=s

∑
π:S→T

in jection

bk1π(k1)bk2π(k2) · · ·bksπ(ks)∏
�/∈S

(
1− ∑

t∈T

b�t
)
. (16)
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Using (16), for A = 1
n J, the condition (4) boils down to

Pr
(
Bi
)
=

(
1− 1

n

)n−1

≤
(

1− 1
n− s

)n−s−1

=
(n)s+1n−s−1(1− s+1

n )n−s−1

(n)sn−s(1− s
n)

n−s = Pr

⎛
⎝ ∧

j∈S∪{i}
B j

∣∣∣∣∣∣
∧
j∈S

B j

⎞
⎠.

Proving this inequality for arbitrary doubly stochastic A has so far eluded us. An
alternative proof to Conjecture 2 with A = 1

n J is using Theorem 7 with Bi instead
of Ai. Theorem 7 was designed for this in [16], although the context was estimating
the number of injections.
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17. Lu, L., Székely, L.A.: A new asymptotic enumeration technique: the Lovász local lemma.
(2011) arXiv:0905.3983v3 [math.CO]

18. Mohr, A.: On negative dependency graphs in spaces of generalized random matchings
(unpublished manuscript) (2011) http://austinmohr.com/work/negdep.pdf

19. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. Proceedings
of the 41st annual ACM symposium on theory of computing (2009)

20. Schrijver, A.: Counting 1-factors in regular bipartite graphs. J. Comb. Theory, Series B 72,
122–135 (1998)

21. Seymour, P.D.: On incomparable collections of sets, Mathematika 20, 208–209 (1973)
22. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Disc. Math. 20, 69–76 (1977)
23. Spencer, J.H.: Ten lectures on the probabilistic method. Conference Board of the Mathematical

Sciences, vol. 52, SIAM (1987)
24. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20, 865–877 (1991)
25. Tutte, W.T.: A problem on spanning trees. Quart. J. Math. Oxford 25(2), 253–255 (1974)
26. Valiant, L.: The complexity of computing the permanent. Theretical Computer Science 8(2),

189–201 (1979)

http://austinmohr.com/work/negdep.pdf

	Quest for Negative Dependency Graphs
	1 Introduction
	2 Examples of Negative Dependency Graphs
	2.1 Random Matchings in Complete Uniform Hypergraphs
	2.2 Random Matchings in Complete Multipartite Graphs
	2.3 Spanning Trees in Complete Graphs
	2.4 Upper Ideals in Distributive Lattices
	2.5 Symmetric Events

	3 Open Problems
	3.1 Maximum Size Matchings in Graphs
	3.2 Partition Lattice
	3.3 Permanent of Doubly Stochastic Matrices

	References


