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Abstract

In many real-world applications of Markov Decision Processes (MPDs),
the number of states is so large as to be infeasible for computation.
State abstraction is a means by which similar states are aggregated,
resulting in reduction of the state space size. Under certain conditions,
it can be shown that the optimal policy derived from the “abstract state
space” will also be optimal for the “ground state space”. We consider
the five abstraction schemes presented in [1] and the related theoretical
results on optimality therein.

1 Markov Decision Processes

Li et al. present the following definition for a Markov Decision Process
(MPD) in [1].

Definition 1.1. A Markov Decision Process (MPD) is a five-tuple 〈S,A, P,R, γ〉
where

• S is a finite set of states,

• A is a finite set of actions,

• P is the transition function with P ass′ denoting the next-state distri-
bution after taking action a in state s,

• R is a bounded reward function with Ras denoting the expected imme-
diate reward gained by taking action a in state s, and
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• γ ∈ [0, 1] is a discount factor.

In solving an MPD, we seek a mapping π : S → A (called a policy)
where, for each state s ∈ S, π(s) gives the action a ∈ A of maximum
expected utility under transition function P and reward function R. We
denote this optimal policy by π∗. In order to later discuss specific types of
abstractions, we also require the following definition.

Definition 1.2. Given a policy π, we define the state-value function V π(s)
as the expected cumulative reward received by executing π from state s.
Similarly, the state-action value function Qπ(s, a) is the expected cumulative
reward received by taking action a in state s and following π thereafter.

As a matter of notation, we denote V π∗ by V ∗ and Qπ
∗

by Q∗.

2 State Abstraction

Loosely speaking, state abstraction is any technique which transforms a
given state space S to another (hopefully smaller) abstract state space S̄
while still preserving some properties of S. Generally, the property we are
most concerned with preserving is the optimality of policies. That is, given
a policy π̄∗ which is optimal for the abstract state space, we want to know
whether we can easily derive an optimal policy for the ground state space. If
optimality is not feasible, then we may consider approximate techniques and
ask the same question regarding policies within a certain bound of optimal.
More formally, we consider the definition of state abstraction presented in
[1].

Definition 2.1. Let M = 〈S,A, P,R, γ〉 be the ground MDP and its ab-
stract version be M̄ = 〈S̄, A, P̄ , R̄, γ〉. Define the abstraction function as
φ : S → S̄ where φ(s) is the abstract state corresponding to ground state
s ∈ S and the inverse image φ−1(s̄) = {s ∈ S|φ(s) = s̄}. Note that un-
der these assumptions, {φ−1(s̄)|s̄ ∈ S̄} partitions the ground state space
S. To guarantee P̄ and R̄ are well-defined, a weighting function is needed:
w : S → [0, 1] where, for each s̄ ∈ S̄,

∑
s∈φ−1(s̄)w(s) = 1. We can now define

the transition and reward functions for M̄ as follows:

R̄as̄ =
∑

s∈φ−1(s̄)

w(s)Ras ,

P̄ as̄s̄′ =
∑

s∈φ−1(s̄)

∑
s∈φ−1(s̄′)

w(s)P ass′ .
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Under this definition, state aggregation is accomplished by the use of
a function that maps several distinct states in the ground state space to
a single state in the abstract state space. The weighting function can be
viewed as a function which, given a ground state s, measures the extent to
which s contributes to φ(s). With this understanding, the formulas for R̄
and P̄ follow directly.

3 Selected Forms of State Abstraction

Depending on which properties of the ground MPD we wish to preserve, we
will necessarily arrive at different types of abstraction. The following five
abstraction methods (and the properties each preserves) are presented in
[1].

Definition 3.1. Given an MPD M = 〈S,A, P,R, γ〉 and any states s1, s2 ∈
S, we define five types of abstraction as below, with an arbitrary but fixed
weighting function w(s).

1. A model-irrelevance abstraction φmodel is such that for any action a
and any abstract state s̄, φmodel(s1) = φmodel(s2) implies Ras1 = Ras2
and

∑
s′∈φ−1

model(s̄)
P as1s′ =

∑
s′∈φ−1

model(s̄)
P as2s′ .

2. A Qπ-irrelevance abstraction φQπ is such that for any policy π and
any action a, φQπ(s1) = φQπ(s2) implies Qπ(s1, a) = Qπ(s2, a).

3. AQ∗-irrelevance abstraction φQ∗ is such that for any action a, φQ∗(s1) =
φQ∗(s2) implies Q∗(s1, a) = Q∗(s2, a).

4. An a∗-irrelevance abstraction φa∗ is such that every abstract class
has an action a∗ that is optimal for all the states in that class, and
φa∗(s1) = φa∗(s2) implies thatQ∗(s1, a

∗) = maxaQ
∗(s1, a) = maxaQ

∗(s2, a) =
Q∗(s2, a

∗).

5. A π∗-irrelevance abstraction φπ∗ is such that every abstract class has
an action a∗ that is optimal for all the states in that class, that
is φπ∗(s1) = φπ∗(s2) implies that Q∗(s1, a

∗) = maxaQ
∗(s1, a) and

Q∗(s2, a
∗) = maxaQ

∗(s2, a).

In other words:

1. A model-irrelevance abstraction is such that two states are related only
if the their reward and transition functions are identical.
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2. A Qπ-irrelevance abstraction is such that two states are related only
if their state-action value functions are identical under all possible
policies.

3. A Q∗-irrelevance abstraction is such that two states are related only
if their state-action value functions are identical under the optimal
policy.

4. An a∗-irrelevance abstraction is such that all states of a given abstract
class have the same optimal action a∗ and, furthermore, two states are
related only if a) a∗ yields the maximum return from the state-action
value function under the optimal policy while in either of the related
states and b) the state-action value functions for the related states are
identical under the optimal policy.

5. A π∗-irrelevance abstraction is such that all states of a given abstract
class have the same optimal action a∗ and, furthermore, two particular
states are related only if a∗ yields the maximum return from state-
action value function under the optimal policy while in either of the
related states.

4 Properties of Highlighted Abstractions

In order to gain some perspective on the relationships among these five
abstractions, we define the following relation.

Definition 4.1. Given abstractions φ1 and φ2, we say φ1 is finer than
φ2, denoted φ1 � φ2, if for any states s1, s2 ∈ S, φ1(s1) = φ1(s2) implies
φ2(s1) = φ2(s2).

Intuitively, one abstraction is finer than another if the former retains at
least as much information about the ground state space as the latter. The
following theorem follows readily from our definitions in 3.1. Note that φ0

below refers to the identity abstraction (i.e. φ0(s) = s for all s ∈ S).

Theorem 4.2. For any MDP, we have φ0 � φmodel � φQπ � φQ∗ � φa∗ �
φπ∗.

The above theorem demonstrates the balance between the information
retained by an abstraction and the size of the abstract state space. The finest
abstraction φ0 retains all information about the ground state space, but
offers no reduction in size. At the other extreme, a π∗-irrelevance abstraction
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may offer great reduction in the size of the state space, but at the cost
of much information loss. Precisely what balance is required for a given
problem is a matter of empirical investigation.

Given an optimal policy for a state-abstracted MDP, a natural question
is to ask how such a policy will perform on the ground MDP. The following
theorem summarizes the performance of the abstractions in 3.1.

Theorem 4.3. With abstractions φmodel, φQπ , φQ∗, and φa∗, the optimal
policy π̄∗ is optimal in the ground MDP. However, there exist examples where
the optimal policy with abstraction φπ∗ is suboptimal in the ground MDP.

Of the abstractions discussed, only π∗-irrelevance fails to preserve policy
optimality in all problems. In other words, the information loss resulting
from applying a π∗-irrelevance abstraction can be so great that optimality
is lost in the ground MDP.

5 Case Study: TAXI Problem

We conclude with some empirical results regarding the size of abstract state
spaces for the TAXI problem. In this problem, an agent is to navigate
a taxi in a 5x5 grid world, pick up a passenger, and deliver him/her to
the destination. The ground state space contains 500 states and 6 actions.
Each action performed costs -1, and the agent receives a reward of +20 after
successfully delivering the passenger to the destination.

Abstraction φ0 φmodel φQ∗ φa∗ φπ∗

# of States 500 500 489 381 6

It should be noted that finding Qπ-irrelevance abstractions efficiently is
still an open problem, but we know from 4.2 that the size of the abstract
state space will be between that of φmodel and φQ∗ .
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