The Lopsided Lovász Local Lemma

Austin Mohr
Department of Mathematics
Nebraska Wesleyan University

With Linyuan Lu and László Székely, University of South Carolina
For this talk, every a probability space Ω is assumed to be uniform and equipped with the counting measure, so that

$$\Pr(A) = \frac{|A|}{|\Omega|}$$

for any subset A of Ω.
Given a collection of mostly independent bad events, there is a way to avoid them all.
2-Coloring Hypergraphs

Hypergraph

- Ground set V
- Collection E of nonempty subsets of V

a_1
a_2
a_3
a_4
a_5

$V = \{ a_i \mid i \in [5] \}$
$E = \{ \{a_1, a_2, a_3\}, \{a_2, a_3\}, \{a_3, a_4, a_5\} \}$
A 2-coloring is an assignment of two colors to the vertices and is proper if no edge is monochromatic.

![Graph](image-url)
2-Coloring Hypergraphs

If there are many intersections among small edges, a hypergraph may be impossible to 2-color properly.

How many intersections can we allow and still guarantee a proper 2-coloring exists?
2-Coloring Hypergraphs

Color the vertices of a hypergraph H with two colors independently at random.

For each edge e, define the “bad” event

$$A_e = \{2\text{-colorings of } H \mid e \text{ is monochromatic}\}.$$

The proper 2-colorability of H is equivalent to

$$\Pr \left(\bigwedge_{e \in E(H)} \overline{A_e} \right) > 0.$$
Let e be an edge of the hypergraph H and F be a collection of edges that are disjoint from e.

The event A_e is independent of the event algebra generated by $\{A_f \mid f \in F\}$.

We capture this information in a dependency graph.
2-Coloring Hypergraphs

Dependency Graph G [Erdős, Lovász 1975]

- Each vertex corresponds to an event.
- Each event is independent of the event algebra generated by its non-neighbors in G.
2-Coloring Hypergraphs

For hypergraph 2-coloring, the graph G with

$$V(G) = E(H) \text{ and } E(G) = \{ef \mid e \text{ and } f \text{ share a vertex in } H\}$$

is a dependency graph.
Lemma (Symmetric Local Lemma - Erdős, Lovász 1975)

Let \(\{A_i \mid i \in [n]\} \) be a collection of events having a dependency graph \(G \) such that

- \(G \) has maximum degree \(d \) and
- \(\Pr (A_i) \leq p \) for all \(i \).

If \(ep(d + 1) \leq 1 \), then

\[
\Pr \left(\bigwedge_{i=1}^{n} \overline{A_i} \right) > 0.
\]
For the hypergraph 2-coloring problem,

- \(\Pr (A_i) \leq \frac{2}{2^k} = p \) (\(k \) is the size of the smallest edge) and
- \(d \) is the greatest number of intersections witnessed by any edge.

The local lemma requires

\[
ep(d + 1) \leq 1
\]

and so

\[
d \leq \frac{2^{k-1}}{e} - 1.
\]

With \(d \) bounded, the local lemma concludes

\[
\Pr \left(\bigwedge_{i=1}^{n} \overline{A_i} \right) > 0,
\]

which means it is possible to properly 2-color the hypergraph.
Theorem (Erdős, Lovász 1975)

Let H be a hypergraph in which every edge contains at least k vertices. If each edge intersects at most $2^k - 1 - 1$ other edges, then H is properly 2-colorable.
Lovász Local Lemma

Lemma (Asymmetric Local Lemma - Spencer 1977)

Let \(\{A_i \mid i \in [n]\} \) be a collection of events having a dependency graph \(G \).

If there are real numbers \(x_i \in [0, 1) \) such that

\[
\Pr (A_i) \leq x_i \prod_{ij \in E(G)} (1 - x_j)
\]

for all \(i \), then

\[
\Pr \left(\bigwedge_{i=1}^{n} \overline{A_i} \right) \geq \prod_{i=1}^{n} (1 - x_i) > 0.
\]

The symmetric version follows from the asymmetric version by setting each \(x_i = \frac{1}{d+1} \).
The Probabilistic Method

Third Edition

Noga Alon
School of Mathematics
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University

Joel H. Spencer
Courant Institute of Mathematical Sciences
New York University
A **derangement** is a permutation of \([n]\) having no fixed point.

Define the **canonical event**

\[
A_i = \{ \text{permutations } \pi \text{ of } [n] \mid \pi(i) = i \}.
\]

The set \(\bigcap_{i=1}^{n} \overline{A_i}\) contains precisely the derangements of \([n]\).
The local lemma does not apply, since no pair of the events are independent:

\[\Pr (A_1 \land A_2) = \frac{(n - 2)!}{n!} = \frac{1}{n^2 - n}, \]

while

\[\Pr (A_1) \Pr (A_2) = \frac{(n - 1)!}{n!} \cdot \frac{(n - 1)!}{n!} = \frac{1}{n^2}. \]
Fortunately, derangements possess a different useful property:

\[\Pr(A_1) = \frac{(n-1)!}{n!} = \frac{1}{n} \]

and

\[\Pr(A_1 \mid \overline{A_2}) = \frac{|A_1 \cap \overline{A_2}|}{|\overline{A_2}|} = \frac{(n-1)! - (n-2)!}{n! - (n-1)!} = \frac{1}{n} - \frac{1}{n(n-1)^2} \]

so

\[\Pr(A_1 \mid \overline{A_2}) \leq \Pr(A_1) \]
In fact,

\[\Pr \left(A_1 \left| \bigwedge_{i=2}^{k} \overline{A}_i \right. \right) \leq \Pr (A_1) \]

for any \(k \).

We capture this information in a **negative dependency graph**.
Derangements

Negative Dependency Graph G [Erdős, Spencer 1991]

- Each vertex corresponds to an event.
- The inequality

\[
\Pr \left(A_i \left| \bigwedge_{j \in S} \overline{A_j} \right. \right) \leq \Pr (A_i)
\]

holds for each event A_i and any subset S of its non-neighbors in G.

Theorem (Lu, Székely 2006)

The graph with vertex set $[n]$ and no edges is a negative dependency graph for the canonical events $\{A_i \mid i \in [n]\}$.
Given a collection of mostly negative dependent bad events, there is a way to avoid them all.

Lemma (Lopsided Local Lemma - Erdős, Spencer 1991)

Let \(\{A_i \mid i \in [n]\} \) be a collection of events having negative dependency graph \(G \).

If there are real numbers \(x_i \in [0, 1) \) such that

\[
\Pr(A_i) \leq x_i \prod_{ij \in E(G)} (1 - x_j)
\]

for all \(i \), then

\[
\Pr \left(\bigwedge_{i=1}^n \overline{A_i} \right) \geq \prod_{i=1}^n (1 - x_i) > 0.
\]
Derangements

Setting each $x_i = \frac{1}{n}$, we verify

$$\Pr(A_i) \leq \frac{1}{n} \prod_{ij \in \emptyset} \left(1 - \frac{1}{n}\right)$$

and conclude

$$\Pr \left(\bigwedge_{i=1}^{n} \overline{A_i} \right) \geq \left(1 - \frac{1}{n}\right)^n \xrightarrow{n \to \infty} \frac{1}{e}.$$
Hypergraph Matchings

The **canonical event** for a partial matching is the collection of all perfect matchings extending it.

![Diagram of a partial matching and a canonical event]
Conflict Graph

- Each vertex corresponds to a partial matching.
- Two matchings are adjacent if their union is not again a partial matching.
Theorem (Lu, M, Székely 2013)

Let \mathcal{M} be any collection of matchings in a complete uniform hypergraph. The conflict graph is a negative dependency graph for the canonical events $\{A_M \mid M \in \mathcal{M}\}$.

The set

$$\bigcap_{M \in \mathcal{M}} \overline{A_M}$$

contains all perfect matchings of the complete uniform hypergraph that extend no matching from \mathcal{M}.

Asymptotics from the Lopsided Local Lemma

ϵ-Near Positive Dependency Graph G [Lu, Székely 2011]

- Each vertex of G corresponds to an event.
- $\Pr(A_i \wedge A_j) = 0$ whenever $ij \in E(G)$.
- The inequality

$$\Pr \left(A_i \bigg\vert \bigwedge_{j \in S} A_j \right) \geq (1 - \epsilon) \Pr(A_i)$$

holds for each event A_i and any subset S of its non-neighbors in G.

Theorem (M 2013)

Let \mathcal{M} be a collection of matchings in a complete uniform hypergraph. If \mathcal{M} is sufficiently “sparse”, then the conflict graph for the canonical events $\{A_M \mid M \in \mathcal{M}\}$ is an ϵ-near positive dependency graph.
Asymptotics from the Lopsided Local Lemma

Let A_1, \ldots, A_n be events in a probability space Ω_N that grows with N and set $\mu = \sum_{i=1}^{n} \Pr(A_i)$.

If the probabilities are appropriately controlled, then a negative dependency graph gives the lower bound

$$\Pr\left(\bigwedge_{i=1}^{n} \overline{A_i}\right) \geq (1 - o(1))e^{-\mu} \quad [\text{Lu, Székely 2011}]$$

and a positive dependency graph gives the upper bound

$$\Pr\left(\bigwedge_{i=1}^{n} \overline{A_i}\right) \leq (1 + o(1))e^{-\mu} \quad [\text{M 2013}]$$

as N tends to infinity.
Corollary (M 2013)

Let A_1, \ldots, A_n be events in a probability space Ω_N. If the conditions of the previous two theorems are satisfied, then

$$\left| \bigcap_{i=1}^{n} \overline{A_i} \right| = (1 + o(1)) e^{-\mu} |\Omega_N|$$

as N tends to infinity.
A typical \textit{k-cycle} in a hypergraph is one in which consecutive edges intersect in exactly one vertex.
The **configuration model** [Bollobás 1980] connects matchings with multihypergraphs.

Figure: Configuration projecting to 3-regular, 2-uniform multihypergraph on four vertices.
Let \mathcal{M} contain all matchings whose projection is a k-cycle with $k < g$.

For such a collection, the set

$$\bigcap_{M \in \mathcal{M}} \overline{A_M}$$

contains precisely the matchings that represent hypergraphs of girth at least g in the configuration model.
The number of r-regular, s-uniform hypergraphs having girth at least g is

\[(1 + o(1)) \frac{(rN)!}{s! r^{N/s} \left(\frac{rN}{s} \right)! (r!)^N} \exp \left(- \sum_{i=1}^{g-1} \frac{(r-1)^i (s-1)^i}{2i} \right) \]

(assuming g, r, and s grow slowly with N).
Homework

1. Think of your favorite combinatorial object.
 - Partial matchings

2. Define the canonical event for a particular instance of that type.
 - All perfect matchings extending it

3. Define conflict for two objects of that type.
 - Union is not a matching

4. Determine whether your conflict graph is a negative dependency graph.
 - Ask László
1. Think of your favorite combinatorial object.
 - Partial matchings

2. Define the canonical event for a particular instance of that type.
 - All perfect matchings extending it

3. Define conflict for two objects of that type.
 - Union is not a matching

4. Determine whether your conflict graph is a negative dependency graph.
 - Ask László
Homework

1. Think of your favorite combinatorial object.
 - Partial matchings

2. Define the canonical event for a particular instance of that type.
 - All perfect matchings extending it

3. Define conflict for two objects of that type.
 - Union is not a matching

4. Determine whether your conflict graph is a negative dependency graph.
 - Ask László
1. Think of your favorite combinatorial object.
 - Partial matchings

2. Define the canonical event for a particular instance of that type.
 - All perfect matchings extending it

3. Define conflict for two objects of that type.
 - Union is not a matching

4. Determine whether your conflict graph is a negative dependency graph.
 - Ask László
Further Information

