
Quantum Computing in Complexity Theory and

Theory of Computation

Austin Mohr
Southern Illinois University at Carbondale

Carbondale, IL 62901
E-mail: austinmohr@gmail.com

Abstract

Traditionally, complexity theory has concerned itself with algo-
rithms run by classical computers. With the recent developments in
quantum computing, complexity theorists have begun considering just
how quantum algorithms fit into the picture. After a brief introduction
into classical complexity theory, we consider what is known and what
is speculated about the relationship of the class of problems solvable
by quantum algorithms (denoted BQP) and the well-known classical
classes P and NP. A short discussion on the possibility of hypercom-
putation (that is, the ability to solve problems which are undecidable
on a classical Turing machine) follows.
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1 Introduction

Computational complexity theory (or just “complexity theory”) is the study
of the scalability of algorithms, both in general and in a problem-specific
sense. The term “scalability” refers to how the time and/or space required to
solve a problem grows as the input grows. The notion of growth is formalized
through the use of big oh notion.

Definition 1.1 (Big Oh [2]). Suppose that an converges to A, bn converges
to 0, with an 6= 0 and bn 6= 0 for any n ∈ N . Then an converges to A with
a rate of convergence O(bn) if and only if |an − A| ≤ K|bn| for sufficiently
large values of n and some positive constant K.

In this way, one can consider the scalability of an algorithm without the
added considerations of processor speed, implementation language, machine
architecture, and so on. An algorithm which is O(n3) is said to be “harder”
than one which is O(n2) because the former will require, in general, more
operations to complete than the latter, regardless of the speed at which these
operations are performed. A problem is said to be solvable in polynomial
time if there exists an algorithm whose runtime can be expressed as O(np),
p ∈ N. Otherwise, the problem is said to be non-polynomial.

The study of complexity theory allows one to place practical limits on
what can be accomplished by a computer. The emergence of quantum al-
gorithms has required complexity theorists to reconsider the relationship
of existing problem classes and even invent new ones. The following sec-
tions will introduce some key concepts from both complexity theory and the
theory of computation and discuss the potential ramifications of quantum
computing on these fields.

2 Complexity Theory

The fundamental unit of complexity theory is the complexity class. A given
complexity class consists of problems which all possess some similar charac-
teristic regarding their hardness. By far, the two most important complexity
classes are P and NP. P is defined to be the class of problems for which there
is an efficient (i.e. polynomial time) deterministic algorithm. NP is defined
to be the class of problems for which there is an efficient deterministic cer-
tification algorithm. That is, regardless of how difficult the problem is to
actually solve, a problem is in NP if we can verify that a proposed solution
is indeed a true solution to the problem in polynomial time. [1] We can
make the following observation.
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Proposition 2.1. P ⊆ NP

Proof. Let a problem x be in P. Then, there exists a deterministic polynomial
time algorithm for solving x which will produce an output y. Now, suppose
we are given y and wish to efficiently certify that it is indeed a solution. We
will simply run the polynomial time algorithm and check that its output is
indeed y. Hence, we have a polynomial time certification algorithm for x.
Therefore, x is in NP.

Perhaps the most famous open question in computer science is P ?= NP.
While it is generally believed that P 6= NP, there is no proof of this fact. The
problem is so fundamental that the Clay Mathematics Institute included it
in its list of seven Millenium Prize Problems. A correct proof to any of these
seven problems will make the prover $1 million richer.

A useful tool in classifying problems into one class or another is the
notion of a polynomial reduction. Informally, problem A is polynomially
reducible to problem B if an algorithm for B can be called a polynomial
number of times to construct a solution for A. Even more informally, one
could say simply that B is harder than A. A problem is said to belong to the
class NP-Complete if every problem in NP can be polynomially reduced to
this problem. So, NP-Complete problems are the hardest problems in NP.
NP-Complete problems are of particular importance because an efficient
solution to even a single such problem can be used to efficiently solve all
problems in NP.

3 Quantum Computing in Complexity Theory

The class of problems efficiently solvable by a quantum computer is known as
Bounded-Error Quantum Polynomial Time (BQP). It’s classical counterpart
is called BPP. Due to the non-deterministic nature of quantum mechanics,
a quantum computer can only run probabalistic algorithms. Hence, the al-
gorithms in BQP are written in such a way that they fail only a negligably
small amount of the time (hence, “bounded-error”). In general, probabilistic
algorithms (both classical and quantum) provide considerable decreases in
runtime. However, little is known regarding the relationship of P, NP, BPP,
and BQP. The following figure summarizes the belief held by most complex-
ity theorists. Note that BPP is omitted, but is known to be a superset of P
and is suspected to be a subset of BQP.
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Suspected (though unproven) relationship between P, NP, and BQP [6]

Note that, to the chagrin of quantum computer scientists, BQP is sus-
pected to be disjoint from NP-Complete. If this is true, then many of the
truly hard problems are still not solvable in polynomial time, even by a
quantum computer. That is not to say, however, that the algorithms in
BQP are useless. Often, quantum algorithms are faster than their classical
counterparts because they are able to maintain a superposition of all states
of a particular system, and then select a particular state from among the
list with just a single operation. To accomplish the same task requires O(n)
operations on a classical computer. This advantage has allowed Grover to
reduce the time spent searching an unsorted database from O(n) to O(n1/2).
Similarly, Shor’s algorithm takes integer factorization from the superpoly-
nomial runtime O(ec(logn)1/3(loglogn)2/3

) to O(n3) which is polynomial (and
much easier to write). However, how and whether BQP interacts with NP-
Complete is still an open problem.

4 Hypercomputation

Definition 4.1. A function is said to be Turing-computable if there exists
a finite procedure (called an algorithm) for computing the output of the
function.

When discussing complexity theory, it is understood that the algorithms
in question are Turing-computable. That is, the the algorithm will halt
after a finite number of steps. The so-called Church-Turing thesis states
that all functions which are “naturally regarded as computable” are Turing-
computable. This seems like a fair (and rather obvious) assumption, given
the broad definition of Turing-computability. However, the concept of
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hypercomputation has become a hot research topic in light of the advance-
ments in quantum computation. A hypercomputer is a machine that can
solve problems which are not Turing-computable (such as the Halting Prob-
lem). Unfortunately, it has been shown in [3] that the current quantum
computational model is Turing-reducible. That is, a quantum computer
may be faster than a classical one, but it cannot solve any problems that a
classical computer cannot. At the same time, [4] presents theoretical models
for hypercomputation such as Oracle-Machines (or just O-Machines) and In-
finite State Turing Machines. Ord holds that these models may be physically
realizable, but require a much more powerful form of quantum superposition
than is currently understood, such as infinite state superposition.

5 Conclusion

In conclusion, while quantum computing offers incredible increases in speed
compared to classical computing, whether this new paradigm offers anything
truly new is yet to be seen. Indeed, it is widely believed (though unproven)
that the any problem solvable by the current model of quantum computing
is also solvable by a classical Turing machine. The prospect of hypercom-
putation is intriguing, though the possibility of realizing such a machine is
still only theoretical. However, the increased power of quantum computers
means that a quantum computer can always solve a given problem instance
faster than a classical computer. This alone is reason enough to continue
research into this burgeoning field.
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