Example Proofs

Austin Mohr

April 5, 2019

Direct Proof

Proposition. If n is odd, then n^3 is odd.

Proof. Since n is odd, we may write n = 2k + 1 for some integer k. We aim to show that n^3 is odd, so we consider

$$n^{3} = (2k+1)^{3}$$

$$= 8k^{3} + 12k^{2} + 6k + 1$$

$$= 2(4k^{3} + 6k^{2} + 3k) + 1.$$

By the closure of the integers under addition and multiplication, we know that $4k^3 + 6k^2 + 3k$ is an integer. Call this integer m, so that we have $n^3 = 2m + 1$. Therefore, n^3 is odd.

Weak Induction

Proposition. For all natural numbers n, we have the identity

$$1 + 2 + \dots + n = \frac{1}{2}n(n+1).$$

Proof. (by induction)

First observe that when n = 1, the identity becomes

$$1 = \frac{1}{2} \cdot 1 \cdot 2,$$

which is a true statement.

Suppose now that there exists a natural number k such that

$$1 + 2 + \dots + k = \frac{1}{2}k(k+1).$$

We aim to show that this implies

$$1 + 2 + \dots + (k+1) = \frac{1}{2}(k+1)(k+2).$$

Applying the inductive hypothesis in the first line, we have

$$(1+2+\cdots+k) + (k+1) = \frac{1}{2}k(k+1) + (k+1)$$
$$= (k+1)\left(\frac{1}{2}k+1\right)$$
$$= \frac{1}{2}(k+1)(k+2),$$

as desired. \Box

Strong Induction

Proposition. Define the recurrence $a_n = 2a_{n-1} + a_{n-2}$ for $n \ge 2$ with $a_0 = 1$ and $a_1 = 2$. For all natural numbers n, we have the inequality $a_n \le 3^n$.

Proof. (by strong induction)

First observe that when $n \in \{1, 2\}$, the inequality becomes $1 \leq 3^0$ and $2 \leq 3^1$, both of which are true statements.

Suppose now that there exists a natural number $k \geq 3$ such that $a_{k-1} \leq 3^{k-1}$ and $a_k \leq 3^k$. We aim to show that these together imply $a_{k+1} \leq 3^{k+1}$. To that end, observe

$$a_{k+1} = 2a_k + a_{k-1}$$
 (by definition)
 $\leq 2 \cdot 3^k + 3^{k-1}$ (by strong inductive hypothesis)
 $= 3^{k-1}(2 \cdot 3 + 1)$
 $< 3^{k-1} \cdot 9$
 $= 3^{k+1}$.

as desired. \Box

Set Algebra

Proposition. The identity $(A \cup B) - C = (A - C) \cup (B - C)$ holds for all sets A, B, and C.

Proof. Observe,

$$(A \cup B) - C = (A \cup B) \cap C^c$$
 (definition of set difference)
= $(A \cap C^c) \cup (B \cap C^c)$ (distributive law)
= $(A - C) \cup (B - C)$ (definition of set difference),

thus completing the proof.

You can also give the appearance of two columns in the following way.

Proposition. The identity $(A \cup B) - C = (A - C) \cup (B - C)$ holds for all sets A, B, and C.

Proof. Observe,

$$\begin{split} &(A \cup B) - C \\ = &(A \cup B) \cap C^c \\ = &(A \cap C^c) \cup (B \cap C^c) \\ = &(A - C) \cup (B - C) \end{split} \qquad \text{(definition of set difference)},$$

thus completing the proof.