Example Proofs

Austin Mohr

April 5, 2019

Direct Proof

Proposition. If n is odd, then n^{3} is odd.
Proof. Since n is odd, we may write $n=2 k+1$ for some integer k. We aim to show that n^{3} is odd, so we consider

$$
\begin{aligned}
n^{3} & =(2 k+1)^{3} \\
& =8 k^{3}+12 k^{2}+6 k+1 \\
& =2\left(4 k^{3}+6 k^{2}+3 k\right)+1 .
\end{aligned}
$$

By the closure of the integers under addition and multiplication, we know that $4 k^{3}+6 k^{2}+3 k$ is an integer. Call this integer m, so that we have $n^{3}=2 m+1$. Therefore, n^{3} is odd.

Weak Induction

Proposition. For all natural numbers n, we have the identity

$$
1+2+\cdots+n=\frac{1}{2} n(n+1) .
$$

Proof. (by induction)
First observe that when $n=1$, the identity becomes

$$
1=\frac{1}{2} \cdot 1 \cdot 2
$$

which is a true statement.
Suppose now that there exists a natural number k such that

$$
1+2+\cdots+k=\frac{1}{2} k(k+1) .
$$

We aim to show that this implies

$$
1+2+\cdots+(k+1)=\frac{1}{2}(k+1)(k+2) .
$$

Applying the inductive hypothesis in the first line, we have

$$
\begin{aligned}
(1+2+\cdots+k)+(k+1) & =\frac{1}{2} k(k+1)+(k+1) \\
& =(k+1)\left(\frac{1}{2} k+1\right) \\
& =\frac{1}{2}(k+1)(k+2),
\end{aligned}
$$

as desired.

Strong Induction

Proposition. Define the recurrence $a_{n}=2 a_{n-1}+a_{n-2}$ for $n \geq 2$ with $a_{0}=1$ and $a_{1}=2$. For all natural numbers n, we have the inequality $a_{n} \leq 3^{n}$.

Proof. (by strong induction)
First observe that when $n \in\{1,2\}$, the inequality becomes $1 \leq 3^{0}$ and $2 \leq 3^{1}$, both of which are true statements.

Suppose now that there exists a natural number $k \geq 3$ such that $a_{k-1} \leq 3^{k-1}$ and $a_{k} \leq 3^{k}$. We aim to show that these together imply $a_{k+1} \leq 3^{k+1}$. To that end, observe

$$
\begin{aligned}
a_{k+1} & =2 a_{k}+a_{k-1} & & \text { (by definition) } \\
& \leq 2 \cdot 3^{k}+3^{k-1} & & \text { (by strong inductive hypothesis) } \\
& =3^{k-1}(2 \cdot 3+1) & & \\
& <3^{k-1} \cdot 9 & & \\
& =3^{k+1} & &
\end{aligned}
$$

as desired.

Set Algebra

Proposition. The identity $(A \cup B)-C=(A-C) \cup(B-C)$ holds for all sets A, B, and C.

Proof. Observe,

$$
\begin{aligned}
(A \cup B)-C & =(A \cup B) \cap C^{c} & & \text { (definition of set difference) } \\
& =\left(A \cap C^{c}\right) \cup\left(B \cap C^{c}\right) & & \text { (distributive law) } \\
& =(A-C) \cup(B-C) & & \text { (definition of set difference), }
\end{aligned}
$$

thus completing the proof.
You can also give the appearance of two columns in the following way.

Proposition. The identity $(A \cup B)-C=(A-C) \cup(B-C)$ holds for all sets A, B, and C.

Proof. Observe,

$$
\begin{array}{rlr}
& (A \cup B)-C & \\
= & (A \cup B) \cap C^{c} & \\
= & \left(A \cap C^{c}\right) \cup\left(B \cap C^{c}\right) & \text { (definition of set difference) } \\
= & (A-C) \cup(B-C) & \\
\text { (definition of set difference), }
\end{array}
$$

thus completing the proof.

